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The stability of a uniformly rotating and infinitely conducting jet with twisted 
magnetic field is discussed. The dispersion relation is obtained for the non- 
axisymmetric perturbations; this involves a complex and implicit function of 
the growth rate. The complex growth rate implies that instability develops 
as an overstability. The effect of axial current is destabilizing for both the 
instabilities m = 0 and m = 1 discussed here. The effect of rotation on the stability 
of the jet is as follows: (a )  for the m = 0 mode, rotation always has a destabilizing 
effect; (b)  for the m = 1 mode, rotation has a stabilizing effect for very long-wave 
perturbations, but for short-wave perturbations it destabilizes the jet. In  
particular there exists a disturbance of a particular wavelength which is un- 
affected by the rotation of the jet. 

1. Introduction 
Rayleigh (1899) has discussed the capillary instability of a cylindrical jet 

which is at rest and subjected to axisymmetric disturbances. He showed that 
the jet is unstable to perturbations having wavelength greater than the circum- 
ference of the cross-section. He also developed for the first time the important 
concept of mode of maximum instability. Later Dattner, Lehnert & Lundquist 
(1958) performed an experiment with a column of liquid mercury, carrying an 
axial volume current, and observed an instability for the mode m = 0. Murty 
(1960) then presented a theoretical study of the same problem for very small 
values of electric conductivity and estimated the growth rate of instability. Later 
Tayler (1960) showed that for finite conductivity the axial current has a de- 
stabilizing effect for all wavelengths for a simple jet. Chandrasekhar (1961) 
then discussed the problem of a finitely conducting liquid jet carrying longitudinal 
field for axisymmetric perturbations, and the non-axisymmetric perturbations 
were discussed by Nayyar & Trehan (1963). Recently Gupta (1964) has discussed 
the capillary instability of a liquid column of a conducting fluid carrying an 
axial volume current for the axisymmetric perturbations. It turns out that a 
mode of maximum instability always exists for any value of the conductivity. 
If in addition a longitudinal magnetic field is present, it  is shown that it is possible 
to stabilize ‘varicose ’ deformations of all wavelengths if the magnetic field 
exceeds a critical value depending on the current strength. The effect of rotation 
on the capillary instability of a jet does not appear to have been studied and hence 
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in this paper we study the effect of rotation on the jet carrying volume current 
and placed in a longitudinal magnetic field. We have also taken into considera- 
tion the surface currents present due to discontinuity of the fields inside and 
outside the jet. 

2. The equilibrium configuration 
Let us consider an infinitely long, inviscid incompressible and perfectly con- 

ductingliquid jet rotating withanangular velocity Qaboutitsaxisandsurrounded 
by vacuum. The twisted magnetic field configuration is (0, Ar/R, B) inside and 
(0, A,R/r, B,) outside the jet, R being the radius of the jet. In  equilibrium, the 
pressure inside the rotating jet is given by 

1 
87l 

[ R2 - r2] + - [A;  + B,2 - A2 - B2], 

where T denotes the surface tension. 

3. Normal-mode analysis 

Let the cylinder be perturbed by a cylindrical wave perturbation of the form 

(a)  Perturbed equations and their solutions inside the jet 

g(r )  exp { i d  + ikz + d) 
of amplitude g(r), azimuthal wave-number m, longitudinal wave-number k 
and time constant g-1, where m, k are real. The linearized perturbed equations 
of the problem become 

(2) 
a25 4 j p - = -grad& +- x B+- x SB + 2p (v x Q), 
a t 2  C C 

divg = 0, 

divSB = 0, 

SB = curl ( g  x B). 

After simplification and reduction, the solutions inside the jet may be expressed 
in the form 



where 

Capillary instability of a jet 

x = K r ,  K ’ 2 = ( 1 - / 3 2 ) k 2 ,  

A m  
R C =  kB+--,  

/3 = [Z(CA/R) + 4 ~ p ( 2 i d 2 ) ] / ( C ~  + 4 7 ~ p ~ ~ ) ,  

and C, is an arbitrary constant. 

( b )  Perturbed equations and their solutions outside the jet 
The solutions for the exterior vacuum are 

SB, = cz ~ ~ ( Y ) ~ K , , ( y ) , i k K , ( Y ) ]  7 

where y = kr for r > R, and C2 is an arbitrary constant. 
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(9) 

3. Boundary conditions connecting the inside and outside solutions 
on the perturbed surface of the jet 
First, the normal component of the magnetic field must be continuous, i.e. 

n.[6B]+8n.[B] = 0, 

where the motion of the unit normal n is determined in terms of the perturbed 
velocity v by the equation 

an 
-+v.Vn = nx[nx{(Vv).n)], 
at 

where the normal is directed into the jet and [XI denotes the jump in the physical 
quantity X as one passes from inside the jet to outside. 

Secondly, the normal component of the stress tensor must be continuous, i.e. 

j* x 6B +8j* x B -n[&p] - s~[P]  = 0, 

where j* and Sj* are surface currents on the jet and x denotes the average value 
of the quantity X as one passes just from inside to outside of the jet. 

Using the above boundary conditions of the problem, the dispersion relation 

where 
47rT 

Y = kR, X = KR, B,“ = __ R 7  

In the absence of rotat.ion, and for axisymmetric perturbation the dispersion 
equation ( 1 1 )  reduces to equation (78) of Gupta (1964). 
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4. Discussion 
The dispersion relation gives the frequency of oscillation implicitly as a com- 

plex function of the wave-number and parameters describing the basic flow. 
As the most general case is too complicated to be simply discussed we shall con- 
sider only two simple cases, the axisymmetric mode and the m = 1 mode. 

Case I ,  m = 0 
The dispersion relation gives 

where 

and 

For moderate value of the field strength, and in the absence of any surface 
currents, we write our dispersion equation as 

To discuss the effect of rotation we shall consider the dispersion equation near 
the origin, i.e. for Y -+ 0 (for Y = 0, ,8 becomes indeterminate and the dispersion 
relation does not remain valid). For Y + 0 the dispersion equation reduces to 

[ l + Q $ ] ( + E )  = ( l - P " f l $ ,  (15 )  

where E: is a very small quantity, which tends to zero as Y -+ 0. For p + 1, 
equation ( 1 5 )  shows that, as e --f 0, IT$ + 0, which implies that 

u2,+0 as Y+O. (16)  

In  the non-magnetic case at Y = 1 the dispersion equation gives 

where P2 = - ~ Q ' / C T ~ .  (18 )  

Evidently equation ( 1 7 )  can be satisfied only for positive values of a$, since 
the left-hand side is a positive quantity. This result, when compared with a jet 
with no rotation, implies a destabilizing effect of the rotation for all values of the 
wave-number. 

To discuss the effect of the axial current inside the jet we for simplicity make 
Q = 0, and dispersion equation becomes 

for p > 1, 2 2  = (p- 1 )  1-2.  
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This dispersion relation has been solved numerically, for the mode m = 0. 
Curve 1 in figure 1 gives the values of CT: for A2 = A; = B2 = Bt = 0*75B:, for 
different values of Y ,  and curve 2 gives the values of CT$ when we assume A = 0. 
Comparison of both these curves gives us a destabilizing influence of the axial 
current considered here. 

I 

Y 

FIGURE 1. Curve 1 : the dispersion relation with volume current 
(A2 = A: = B2 = B2 - 0.75B2). 

0 -  S ’  

curve 2 : the dispersion relation with sheet current 

A: = B2 = Bt = 0.75B:). ( A  = 0, 
The abscissa measures the wave-number in the unit R-’ and the ordinate the square of 
growth rate in the unit (T/pR3).  

Again if we consider both rotation and twisted magnetic field together we 
get /? to be complex and hence X is also complex which gives rise to a complex 
value of the growth rate. Thus we conclude that instability caused by the uni- 
form rotation of the jet with a twisted magnetic field will occur as an over- 
stability. 

Case II, m = 1 

The dispersion equation in this case becomes 
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For Y = 0 and with no surface currents we obtain g2 = - Q2 to be a solution 
of the dispersion equation (20) for any value of the magnetic field. Thus the system 
is always stable for very long wavelengths. 

For the simple case with no magnetic field we get 

For p + 1, the left-hand side is zero only if Y 2  = R22,. Thus 

gg = 0 for Y = a*. 
For instance, if 522, = 0.5, then the critical value of Y is 0.7071. Moreover, 
numerical computation has indicated that, for 

A2 = A$ = B2 = B$ = 0-75B; and a$ = 0.5, 

the growth rate g22, is zero at Y = 0.29. Thus we conclude that the magnetic 
field configuration considered here has a stabilizing effect on the jet, though the 
effect of volume current only is destabilizing. 

The effect of rotation is : (i) for very large values of the wavelengths, rotation 
has a stabilizing effect on the jet; (ii) for short wavelengths it is destabilizing. 
Thus there always exists a disturbance of a particular wavelength, Arot say, 
which is unaffected by the rotation; hrot is a function of the parameters of the 
system considered. 
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